Chemistry and Biochemistry - Research and Projects

Research and Projects

Chemistry and Biochemistry

Dr. Thomas Arruda, associate professor

Energy is a major scientific, economic and societal challenge. 我们目前对化石燃料的需求是有问题的,原因包括环境破坏和长期供应不足. Clean, renewable alternatives must be developed to mitigate these issues.

我们的研究涉及与可再生能源替代相关的材料的基础和应用调查, such as fuel cells and batteries. 燃料电池是在化学反应中产生能量的电化学反应器, 虽然电池是一种储存设施,可以与风能和太阳能等其他清洁能源一起使用.

With fuel cells, 我们主要关注促进产生能量的化学反应的电催化剂. For example, 质子交换膜燃料电池需要性能良好的铂催化剂,但由于成本高,限制了其可行性. 更便宜的替代能源将为电动汽车和其他行业带来电力模式的转变. We are investigating alternatives to platinum for use in fuel cells, 不仅适用于车辆,也适用于其他应用,如空间和技术应用.

With batteries, 我们专注于大型电池,在可再生能源产量低的时候,可以将电力输送到电网, or store energy when renewables are not needed by the grid. One variety is the redox-flow battery, 它与燃料电池类似,但通常更简单,不需要催化剂. We investigate factors that affect the performance of these batteries, such as flow dynamics and electrochemical kinetics.

We employ many techniques in our investigations, including electrochemical (cyclic voltammetry, 计时方法(电化学阻抗谱)和光谱学(基于同步加速器的x射线吸收和衍射技术). In addition to our in-house studies, we collaborate with colleagues at the Naval Undersea Warfare Center, Northeastern University, University of Dayton, Brookhaven National Lab and others.

Dr. Khadine Higgins, associate professor

我们试图了解细菌细胞如何摄取,运输和出口不同的过渡金属. Our research utilizes a variety of chemistry, 生物化学和分子生物学技术研究细菌中的金属离子稳态.

我们的团队目前正在研究结核分枝杆菌(M. tuberculosis), KmtR, 它负责调节Ni(II)和Co(II)的输出蛋白的表达. M. tuberculosis, the causative agent of tuberculosis, 感染了世界上近三分之一的人口,每年造成近200万人死亡. KmtR的金属位结构和各自的金属结合亲和力正在测定中.

Our long-term goal is to understand why M. tuberculosis requires two Ni(II)- and Co(II)-responsive metalloregulators. Metal ion homeostasis is critical for the survival of many organisms, and many pathogens require these essential metal ions for their survival. These metals can be toxic, and as a result, 细菌已经发展出处理内部和环境中金属离子浓度变化的方法. 了解致病菌如何维持细胞内金属离子浓度是至关重要的, as the number of drug-resistant strains of bacteria continue to increase.

Dr. Susan Meschwitz, associate professor

我们的研究处于有机合成、药物化学和化学生物学的交叉领域. 我们的最终目标是使用化学工具来解决生物学和医学中的重要问题.

我们对有可能影响现代医学的有机分子感兴趣. 极难治疗的耐药细菌的增加已成为对公共卫生的威胁. 现有抗生素无法控制感染,因此寻找现有药物的替代品至关重要. 许多致病菌依靠一种称为群体感应的通讯系统来调节感染宿主所必需的毒力因子.

我们的长期目标是发现能够抑制群体感应的分子. 我们目前正在探索发现这些化合物的两个领域:在我们的实验室设计和合成以及从天然产物中分离. 我们实验室合成或分离的分子有望成为群体感应研究中有价值的工具,并为抗感染药物的开发提供潜在的新线索.

Dr. Bernard Munge, professor

Our research focuses on the development of chemical and biological sensors. We span the traditional areas of bioanalytical chemistry, biology and material science, 重点研究纳米材料传感器阵列在生物医学诊断中的应用.

一个正在进行的项目侧重于用于早期检测血清中癌症生物标志物蛋白的生物传感器阵列. 广义定义为指示正常生物过程的可测量或可观察的因素, disease processes or responses to a therapeutic intervention, biomarkers can include physical symptoms, secreted proteins, mutated DNAs and RNAs, cell death or proliferation, 还有血清中小分子的浓度,比如葡萄糖或胆固醇.

The development of low-cost, 同时测量蛋白质生物标志物的可靠方法对于癌症的早期检测至关重要, disease monitoring and personalized cancer therapy. Our long-term goal is to develop a simple, 能够同时测量4-8种癌症生物标志物的快速设备,用于医生办公室的即时临床应用. 这将大大降低医疗费用,并导致准确的癌症诊断, 疾病监测和患者对治疗的反应,并允许早期发现疾病复发.

We are also involved in statewide, 合作研究的重点是开发集成了纳米级结构和超分子化学的实时微流体传感器, low-cost, rapid detection of nutrients and pollutants in ocean waters.

参加我们癌症生物标志物研究的学生接触到许多用于合成纳米颗粒的生物分析技术, fabricate the immunosensors, characterize and analyze the biosensor chemistry. These include voltammetry, UV-Vis spectroscopy, surface plasmon resonance, electrochemiluminescence, screen printing (fabrication), quartz crystal microbalance, spectroelectrochemistry, Fourier-transform infrared spectroscopy, Raman spectroscopy and surface chemistry techniques.

这些研究经历为我们的学生带来了独特的就业机会. Our students are not only learning science but also doing science.